The Rainforest Canopy


July 30, 2012

An estimated 50-90 percent of life in the rainforest exists in the trees, above the shaded forest floor. Primary tropical rainforest is vertically divided into at least five layers: the overstory, the canopy, the understory, the shrub layer, and the forest floor. Each layer has its own unique plant and animal species interacting with the ecosystem around them. The overstory refers to the crowns of emergent trees which soar 20-100 feet above the rest of the canopy. The canopy is the dense ceiling of closely spaced trees and their branches, while the understory is the term for more widely spaced, smaller tree species and juvenile individuals that form a broken layer below the canopy. The shrub layer is characterized by shrubby species and juvenile trees that grow only 5-20 feet off the forest floor. The forest floor is the ground layer of the forest made up of the trunks of trees, fungus, and low-growing vegetation. These layers are not always distinct and can vary from forest to forest, but serve as a good model of the vegetative and mechanical structures of the forest.

The overstory is characterized by scattered emergent trees that tower above the rest of the canopy, the tops of some species exceeding 210 feet (65 m). Below the overstory trees, the canopy stretches for vast distances, seemingly unbroken when observed from an airplane. However, despite overlapping tree branches, canopy trees rarely interlock or even touch. Instead they are separated from one another by a few feet. Why the branches of these trees do not touch is still a mystery, but it is thought that it might serve as protection from infestations from tree-eating caterpillars and tree diseases like leaf blight. To survive, canopy dwellers must have the ability to negotiate these gaps by climbing, leaping, gliding, or flying.

The billions of leaves of the canopy, acting as miniature solar panels, provide the source of power for the forest by converting sunlight to energy through photosynthesis. Photosynthesis is the process by which plants convert atmospheric carbon dioxide and water into oxygen and simple sugars. Since the rate of photosynthesis of canopy trees is so high, these plants have a higher yield of fruits, seeds, flowers, and leaves which attract and support a wide diversity of animal life. Besides attracting a broad array of wildlife, the canopy plays an important role in regulating regional and global climate because it is the principal site of the interchange of heat, water vapor, and atmospheric gases. In addition to collecting solar energy and regulating the climate, the canopy shields the understory from harsh and intense sunlight, drying winds, and heavy rainfall, and retains the moisture of the forest below. Thus the forest interior is a far less volatile environment than the upper parts of the canopy ceiling. The interior region is protected from the extremes of the canopy: temperature fluctuations, damaging solar radiation, and strong winds. Light levels are diffuse and subdued, the humidity is higher and more constant, and there is very little direct sunlight in the lower canopy.

The rainforest canopy in Colombia. Click image for more photos. (Photo by R. Butler)

Review questions:

  • Where does the rainforest derive its energy?
  • Where do the majority of rainforest species live?

Other versions of this page

spanish | french | portuguese | chinese | japanese

Continued / Next: Studying the rainforest canopy